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Mindfulness meditation, a cognitive practice premised on sustaining nonjudgmental awareness of arising sensory events, reliably atten-
uates pain. Mindfulness meditation activates multiple brain regions that contain a high expression of opioid receptors. However, it is
unknown whether mindfulness-meditation-based analgesia is mediated by endogenous opioids. The present double-blind, randomized
study examined behavioral pain responses in healthy human volunteers during mindfulness meditation and a nonmanipulation control
condition in response to noxious heat and intravenous administration of the opioid antagonist naloxone (0.15 mg/kg bolus � 0.1 mg/kg/h
infusion) or saline placebo. Meditation during saline infusion significantly reduced pain intensity and unpleasantness ratings when
compared to the control � saline group. However, naloxone infusion failed to reverse meditation-induced analgesia. There were no
significant differences in pain intensity or pain unpleasantness reductions between the meditation � naloxone and the meditation �
saline groups. Furthermore, mindfulness meditation during naloxone produced significantly greater reductions in pain intensity and
unpleasantness than the control groups. These findings demonstrate that mindfulness meditation does not rely on endogenous opioi-
dergic mechanisms to reduce pain.
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Introduction
Opioidergic mechanisms have been repeatedly demonstrated to
be involved in cognitive inhibition of pain (Bandura et al., 1987;

Tracey et al., 2002; Wager et al., 2007). Pain relief produced by
placebo (Levine et al., 1978; Grevert et al., 1983; Amanzio and
Benedetti, 1999; Zubieta et al., 2005; Eippert et al., 2009), condi-
tioned pain modulation (King et al., 2013), and attentional con-
trol (Sprenger et al., 2012) is reversed by administration of the
opioid antagonist naloxone. Furthermore, brain regions associ-
ated with facilitating the cognitive modulation of pain, including
the anterior cingulate cortex (ACC), orbitofrontal cortex (OFC),
and insula, contain high concentrations of opioid receptors
(Jones et al., 1991; Adler et al., 1997; Willoch et al., 1999; Casey et
al., 2000; Willoch et al., 2004; Wager et al., 2007) and activation of
these opioidergic systems (Petrovic et al., 2002; Zubieta et al.,
2005; Bingel et al., 2006; Wager et al., 2007; Eippert et al., 2009;
Sprenger et al., 2012) produces analgesia (Tracey et al., 2002;
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Significance Statement

Endogenous opioids have been repeatedly shown to be involved in the cognitive inhibition of pain. Mindfulness meditation, a
practice premised on directing nonjudgmental attention to arising sensory events, reduces pain by engaging mechanisms sup-
porting the cognitive control of pain. However, it remains unknown if mindfulness-meditation-based analgesia is mediated by
opioids, an important consideration for using meditation to treat chronic pain. To address this question, the present study
examined pain reports during meditation in response to noxious heat and administration of the opioid antagonist naloxone and
placebo saline. The results demonstrate that meditation-based pain relief does not require endogenous opioids. Therefore, the
treatment of chronic pain may be more effective with meditation due to a lack of cross-tolerance with opiate-based medications.
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Bingel et al., 2006). Several of these brain regions, such as the
ACC and prefrontal cortex (PFC), project to the periaqueductal
gray (PAG) (Floyd et al., 2000), a structure that can also be di-
rectly activated by opioids. The PAG projects to the rostral ven-
tral medulla (Beitz, 1982; Mantyh, 1983a, 1983b) and in turn
projects to the spinal dorsal horn and can inhibit nociceptive
processing via multiple neurotransmitter systems (Liebeskind et
al., 1973).

Mindfulness meditation is another cognitive technique that
can attenuate the subjective experience of pain. As implemented
in our laboratory, this technique combines focused attention
on the breath with objective appraisal of arising thoughts
and sensations. Brain imaging has shown that mindfulness-
meditation-related pain reductions are associated with activation
of the perigenual ACC, OFC, and anterior insula (Zeidan et al.,
2011; Zeidan et al., 2015). Although activation of these regions
could be suggestive of opioidergic mechanisms, given their high
concentrations of opioid receptors, other patterns of brain activ-
ity raise the possibility of alternative mechanisms supporting
mindfulness-meditation-induced pain relief. Specifically, mind-
fulness meditation significantly deactivates the thalamus (Zeidan
et al., 2011; Zeidan et al., 2015), potentially reflecting cognitive
gating of the transmission of sensory information to the cortex
(Zeidan et al., 2011; Zeidan et al., 2012). Moreover, mindfulness
meditation deactivates the PAG (Zeidan et al., 2015), a find-
ing inconsistent with activation of this structure by opioid-
dependent cognitive pain-modulatory manipulations (Watkins
and Mayer, 1982; Basbaum and Fields, 1984). To test the hypoth-
esis of an opioid mechanism, the present double-blind, random-
ized psychophysical study examined subjective pain reports
during mindfulness meditation in response to noxious heat stim-
ulation during naloxone or saline administration.

Materials and Methods
Participants
Ninety-five healthy, pain-free, and meditation-naive human volunteers
recruited from the local community provided informed consent for the
present study. Wake Forest School of Medicine’s Institutional Review
Board approved all study procedures. All subjects provided written, in-
formed consent recognizing the following: (1) that they would experi-
ence painful, heat stimuli; (2) that all methods were clearly explained;
and (3) that they were free to withdraw from the study without prejudice.
Subjects were informed that the study was focused on assessing “if med-
itation is associated with the release of naturally occurring opiates” and
that they “may receive intravenous administration of saline or naloxone,
a relatively safe drug that blocks the transmission of opioid activity.”

Seventy-eight participants (75 right-handed; mean age � 27 � 7 years;
39 males; 39 females) successfully completed all study procedures (57
were white, 8 were Asian, 7 were black, 4 were Hispanic, 1 was Native
American, and 1 self-identified as “mixed”).

Seventeen recruited participants were excluded from the final analysis
for a variety of reasons including age (n � 1), IV administration trouble
(n � 2), equipment malfunction (n � 1), scheduling conflicts (n � 2),
chronic pain (n � 1), sleeping through the meditation training (n � 2),
pain insensitivity (n � 1), and procedural errors (n � 3). Importantly, 4
subjects experienced several adverse effects, including dizziness (n � 3)
and syncope (n � 1), during the administration of the naloxone bolus.
All of these subjects were white females with weights �70 kg. All
four participants recovered rapidly after termination of the naloxone
infusion.

Sample size determination
Based on our previous studies (Zeidan et al., 2010a; Zeidan et al., 2011;
Zeidan et al., 2015) and sample size determination software (G*power,
3.1), 16 subjects per group were considered sufficient to detect a signifi-

cant difference (large effect size � �p
2 �.14) between groups on a two-

sided, 0.05 test of proportions [repeated-measures (RM) “within-
between interaction” ANOVA] with �80% power. However, variability
in responses to naloxone may exist, so we targeted a sample of 20 subjects
per group for a total of 80 subjects. This sample size was calculated to
provide �90% power to detect a significant difference between groups
on visual analog scale (VAS) pain ratings.

Randomization procedure
Randomization was stratified so that each sex would have their
respective list of randomization codes. Males and females were ran-
domized without replacement across a block of 80 codes using an
Excel-based random number generator. The four treatment arms (1,
2, 3, and 4) were permuted with respect to treatment assignment
(meditation � naloxone, control � naloxone, meditation � saline,
control � saline) in a double-blind fashion. Participants were in-
formed of their respective group assignment after completion of Ex-
perimental Session 1.

Stimuli
As described previously (Quevedo and Coghill, 2007; Starr et al., 2009;
Yelle et al., 2009; Zeidan et al., 2011; Lobanov et al., 2014), MEDOC
TSA-II (Medoc) was used to deliver all thermal stimuli using a 16 mm 2

surface area thermal probe. To reduce habituation, the thermal probe
was moved to a new stimulation site after each experimental series. All
stimulus temperatures were �49°C and subjects were free to escape the
stimulator at any time by lifting their limb from a custom-made probe
holder.

Psychophysical assessment of pain
As described previously (Zeidan et al., 2011; Zeidan et al., 2015), pain
intensity and unpleasantness ratings were assessed with a 15 cm plastic
sliding VAS (Price et al., 1994). We instructed subjects that “the distinc-
tion between the two aspects of pain might be made clearer if you think of
listening to a sound, such as a radio. The intensity of pain is like loudness;
the unpleasantness of pain depends not only on intensity, but also on
other factors which may affect you” (Price et al., 1983). The minimum
rating (“0”) was designated as “no pain sensation” and “not at all un-
pleasant,” whereas the maximum (“10”) was labeled as “most intense
pain sensation imaginable” or “most unpleasant sensation imaginable,”
respectively. These scales have been demonstrated to provide reliably
separate assessment of pain intensity and unpleasantness, to be internally
consistent, and to approximate ratio scale measurement accuracy (Price,
2000).

Drug administration
A 0.15 mg/kg bolus dose of naloxone (Naloxone HCl; Amphastar Phar-
maceuticals) or saline in 25 ml of normal saline was administered over 10
min via the intravenous line inserted into the antecubital vein of the
nondominant arm. Onset of naloxone-induced opioidergic antagonism
(after intravenous administration) occurs within 2 min and exhibits an
average half-life of 64 min (“Summary of Product,” Amphastar Pharma-
ceuticals). Importantly, the duration of the experiment from the onset of
naloxone infusion to completion was 22 min. However, to further ensure
that naloxone would antagonize opioid receptors for entirety of the ex-
periment, we administered a supplementary intravenous infusion dose
of 0.1 mg/kg/h naloxone or saline immediately after bolus infusion
ceased until the end of the experiment (�12 min). This large dose com-
prehensively antagonizes endogenous opioids (Levine and Gordon,
1986) and is larger than dosages previously used to successfully reverse
analgesia produced by placebo (Levine et al., 1978; Grevert et al., 1983;
Amanzio and Benedetti, 1999; Benedetti et al., 1999), electrical stimula-
tion of periventricular gray matter (Adams, 1976; Hosobuchi et al.,
1977), transcranial magnetic stimulation (de Andrade et al., 2011; Taylor
et al., 2013), and acupuncture (Mayer et al., 1977). We employed a
slightly lower naloxone infusion dosage than other high-dose naloxone-
pain focused studies (Eippert et al., 2009; Sprenger et al., 2012; Schoell et
al., 2010) to reduce the exhibition of naloxone-related side effects that
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may lead to drug assignment un-blinding. Only the study physicians,
research pharmacist, and research coordinator were aware of partici-
pant– drug assignment. Subjects, research nurses, and all experimenters
were blinded to drug assignment.

Experimental design
Experimental Session 1 (psychophysical training and baseline
pain testing)
Subjects were initially familiarized with 32 5-s-duration stimuli (35–
49°C) and use of the VAS (Zeidan et al., 2011; Emerson et al., 2014;
Lobanov et al., 2014). Stimuli were delivered to the ventral aspect of the
left forearm. Baseline ( preintervention) psychophysical responses to
noxious heat were then assessed by administering two heat series. Heat
series (4 min and 24 s) included 10 alternating, 12 s plateaus of 49°C and
35°C stimulation to the back of the right calf. The thermal probe was
moved to a different region on the back of the right calf after completion
of the first heat series. VAS pain intensity and unpleasantness ratings
were collected after each series. After successful completion of sensory
testing, participants were instructed of their respective group assignment
(i.e., meditation or control).

Experimental Sessions 2–5: group training sessions
Mindfulness meditation training regimen. As in previous studies (Zeidan
et al., 2011; Zeidan et al., 2015), subjects in the meditation group partic-
ipated in 4 separate days (20 m/d) of mindfulness-based mental training.
Subjects were informed that meditation training was secular and taught
as the cognitive practice of mindfulness meditation. Across all of the
meditation training sessions, subjects were instructed to focus on the
changing sensations of the breath while using a nonevaluative cognitive
state. Time providing guided meditative instructions was progressively
reduced across meditation training days to allow subjects to meditate in
silence (Zeidan et al., 2010a, 2010b, 2010c; 2011, 2014).

In each meditation training session, mindfulness-based instruc-
tions emphasized acknowledging arising thoughts, feelings, and/or

emotions without judgment or emotional reaction and to “simply
return their attention back to the breath” sensation whenever such
discursive events occurred. Subjects were also taught that perceived sensory/
affective events were “momentary” and “fleeting” and did not require fur-
ther interpretation or evaluation. In meditation training session 1, subjects
were instructed to focus on the breath sensations occurring “at the tip of the
nose.” In meditation training session 2, subjects were instructed to expand
their focus to the “full flow of the breath,” including bodily sensations (e.g.,
rise and fall of the abdomen and chest). On meditation training days 3 and 4,
subjects received minimal meditation instructions. Contrary to traditional
mindfulness-based training programs, subjects were not instructed to prac-
tice outside of training.

Book listening control regimen. The control group listened to an audio
recording of The Natural History of Selborne (White, 1908) across 4 d (20
m/d). This group was used to control for facilitator attention and the
time elapsed in the other interventions. Subjects were not allowed to
sleep, use their phones, or talk to the experimenter during book listening.

Experimental Session 6
After successful completion of respective group interventions, subjects
reported to Wake Forest School of Medicine’s Clinical Research Unit
(CRU). CRU nurses first administered an opiate-focused urine drug
screening to confirm that no subjects were using opioids and to minimize
the chance that opioid-dependent individuals would experience with-
drawal during naloxone administration. Weight was subsequently mea-
sured to confirm the prescribed drug dosage. A CRU nurse then inserted
the IV catheter into the nondominant arm of each subject. For safety
purposes, blood pressure, respiration rate, oxygen saturation, and heart
rate data were systematically monitored and recorded throughout the
entire experiment. Finally, subjects placed their right calf on a custom-
made thermal probe holder and were provided with an overview of the
experimental procedures before the testing phase of the experiment.

Rest. Two heat series were administered. VAS pain intensity and un-
pleasantness ratings were collected after each series. The thermal probe

Table 1. Group demographics, weight, baseline pain ratings, and naloxone symptom assessments

Meditation � naloxone Control � naloxone Meditation � saline Control � saline F p- value

Age 27.25 (2.07) 26.55 (1.39) 26.6 (1.24) 27.25 (1.46) 0.06 0.98
Weight (kg) 69.10 (2.08) 78.03 (4.15) 74.78 (3.85) 76.43 (3.54) 1.26 0.30
Drug/saline dosage (mg) 12.08 (0.36) 13.65 (0.72) 13.09 (0.68) 13.37 (0.61) 1.28 0.29
Baseline VAS pain intensity 5.34 (0.40) 4.74 (0.49) 4.18 (0.39) 5.60 (0.51) 2.00 0.12
Baseline VAS pain unpleasantness 5.36 (0.41) 4.96 (0.54) 4.59 (0.45) 5.68 (0.52) 0.98 0.40
Naloxone symptom assessment

Dry mouth 1.5 (0.33) 0.94 (0.32) 0.95 (0.27) 0.74 (0.31) 1.14 0.34
Dry skin 0.40 (0.18) 0.61 (0.26) 0.30 (0.21) 0.58 (0.26) 0.43 0.74
Blurred vision 0.05 (0.15) 0.11 (0.08) 0.15 (0.15) 0.16 (0.12) 0.22 0.88
Sedation 0.35 (0.15) 0.50 (0.20) 0.40 (0.22) 0.42 (0.26) 0.09 0.97
Nausea 0 0.06 (0.06) 0.06 (0.06) 0.16 (0.12) 0.97 0.41
Dizziness 0.05 (0.05) 0.17 (0.09) 0.05 (0.05) 0.16 (0.16) 0.46 0.71
Headache 0.15 (0.08) 0.06 (0.06) 0.15 (0.08) 0 1.29 0.29
Drowsy 2.11 (0.57) 2.91 (0.59) 2.26 (0.47) 1.65 (0.51) 0.89 0.45
Excited 1.42 (0.40) 2.12 (0.30) 1.11 (0.32) 1.62 (0.42) 1.31 0.26
Feeble 2.59 (0.64) 2.27 (0.44) 1.46 (0.44) 1.25 (0.30) 1.83 0.15
Clear-headed 1.14 (0.44) 2.35 (0.59) 1.14 (0.26) 1.36 (0.47) 0.04 0.99
Clumsy 1.13 (0.43) 2.35 (0.59) 1.14 (0.26) 1.36 (0.47) 1.64 0.19
Energetic 6.05 (0.46) 6.16 (0.55) 6.82 (0.50) 6.57 (0.60) 0.47 0.70
Discontented 1.03 (0.32) 1.97 (0.51) 1.01 (0.38) 1.68 (0.49) 1.25 0.30
Tranquil 8.36 (0.51) 8.09 (0.54) 8.64 (0.25) 7.55 (0.54) 0.98 0.41
Quick-witted 7.48 (0.43) 7.34 (0.45) 7.67 (0.32) 7.30 (0.65) 0.13 0.94
Relaxed 8.60 (0.28) 7.24 (0.49) 8.65 (0.25) 7.51 (0.52) 3.34 0.02
Dreamy 3.86 (0.69) 3.07 (0.47) 2.64 (0.49) 1.86 (0.42) 2.44 0.07
Proficient 8.08 (0.38) 8.06 (0.37) 8.45 (0.27) 8.29 (0.37) 0.28 0.84
Sad 0.82 (0.32) 1.86 (0.37) 1.14 (0.58) 1.02 (0.26) 1.17 0.33
Amicable 9.02 (0.27) 8.24 (0.35) 9.02 (0.22) 9.42 (1.07) 0.68 0.57
Bored 2.37 (0.57) 3.54 (0.58) 1.45 (0.35) 2.43 (0.46) 2.94 0.04
Gregarious 6.49 (0.59) 7.06 (0.35) 7.71 (0.29) 6.83 (0.48) 1.37 0.26
Insecure 1.23 (0.40) 1.58 (0.34) 0.63 (0.19) 1.02 (0.26) 1.76 0.16
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was moved to a different location of the right
calf after each heat series to reduce potential
habituation and sensitization.

Naloxone/saline administration. After the
first two heat series, a research nurse initiated
the naloxone/placebo infusion. Participants in
the meditation group were instructed to “begin
meditating until the end of the experiment.”
Control group subjects were told to “close your
eyes and relax until the end of the experiment.”

Manipulation (meditation/control). Two
more heat series were administered during
meditation or rest (i.e., control condition).
VAS pain intensity and unpleasantness ratings
were collected after each series and the thermal
probe was moved to a different location of the
right calf after each heat series. After comple-
tion of the experiment, blood pressure
readings were collected and participants were
assessed for potential naloxone-related symptoms.

Analysis of behavioral data
Behavioral data were analyzed with SPSS 19.0
software (IBM).

Pain ratings
Psychophysical assessment of pain from base-
line (Experimental Session 1) and Experimen-
tal Session 6 were analyzed separately. In
Experimental Session 1, group differences in
pain intensity and unpleasantness ratings were
examined with a single-factor ANOVA to as-
sess for potential baseline ( preintervention)
group differences.

In Experimental Session 6, a two-factor
ANOVA tested the hypothesis that meditating
in the presence of saline and noxious heat stim-
ulation would produce significantly lower pain
intensity and unpleasantness ratings compared
with rest, meditating in the presence of nalox-
one, and control. Significant ( p � 0.05) main
effects and interactions were investigated with
planned post hoc tests (Bonferroni-adjusted �
level of .013 per test) comparing the percentage
change (from rest to manipulation) in pain in-
tensity and unpleasantness ratings (Toothaker,
1993; Cohen and Lea, 2004).

Secondary outcomes
Univariate ANOVA analyses examining poten-
tial group differences on demographics (age,
weight), drug dosage, and outcomes corre-
sponding to the naloxone symptoms checklist
(Bentley et al., 2004; Eippert et al., 2009) were
conducted.

Results
Baseline pain ratings across groups
Before intervention training, there were
no significant baseline (i.e., Session 1) dif-
ferences among groups for pain intensity
(F(3,74) � 2.00, p � 0.12) or unpleasantness (F(3,74)� 0.99, p � 0.40)
ratings (Table 1).

Naloxone and mindfulness-meditation-induced analgesia
Pain intensity
The RM ANOVA conducted on pain intensity ratings exhibited a
significant main effect of rest/manipulation (F(1,74) � 4.22, p �

0.043, �p
2 � 0.05). There was also a significant main effect of

group (F(3,74) � 3.85, p � 0.01, �p
2 � 0.14). However, a univariate

ANOVA found no significant between-group differences on pain
intensity ratings at rest (F(3,74) � 2.03, p � 0.12). Importantly,
there was a significant rest/manipulation � group interaction
(F(3,74) � 12.86, p � 0.001, �p

2 � 0.34) (Fig. 1).
A priori independent-samples t tests were conducted on the

percentage change in pain intensity ratings to investigate the sig-

Figure 1. Psychophysical pain intensity ratings (�95% confidence intervals). Meditation during saline (meditation � saline)
infusion significantly ( p � 0.001) reduced pain intensity and unpleasantness ratings compared with rest and the control and
saline (control � saline) group. Importantly, naloxone failed to reverse meditation-induced analgesia. Meditation during nalox-
one administration (meditation � naloxone) significantly ( p � 0.001) reduced pain intensity ratings compared with rest, the
control � saline group, and the control and naloxone (control � naloxone) groups. There were no significant differences in pain
intensity reductions ( p � 0.69) between the meditation � saline and the meditation � naloxone groups.

Figure 2. Psychophysical pain unpleasantness ratings (�95% confidence intervals). Meditation during saline (meditation �
saline) infusion significantly ( p � 0.001) reduced pain unpleasantness compared with rest and the control and saline (control �
saline) group. Naloxone did not reverse meditation-induced pain relief. Meditation during naloxone administration (meditation
� naloxone) significantly ( p � 0.001) reduced pain unpleasantness ratings compared with rest, the control � saline group and
the control and naloxone (control�naloxone) groups. There were also no significant differences in pain intensity reductions ( p �
0.75) between the meditation � saline and the meditation � naloxone groups.
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nificant interaction and to test study’s hypotheses. Mindfulness
meditation in the presence of saline significantly reduced (p �
0.001) pain intensity ratings (	21%) compared with the control
group during saline administration (�21%). Importantly, nalox-
one failed to reverse meditation-induced reductions in pain in-
tensity ratings. That is, there were no significant differences in
the percentage change in pain intensity reductions produced
by meditation in the presence of naloxone (	24%) compared
with meditation in the presence of saline (p � 0.69). Further-
more, meditation in the presence of naloxone significantly re-
duced (p � 0.001) pain intensity ratings compared with the
control � saline and the control � naloxone (�11%) groups.

Pain unpleasantness
The RM ANOVA on pain unpleasantness ratings detected a sig-
nificant main effect of rest/manipulation (F(3,74) � 14.93, p �
0.001, �p

2 � 0.17) and a main effect of group (F(3,74) � 6.04,
p � 0.001, �p

2 � 0.20). However, univariate ANOVA confirmed
no significant between-groups differences in pain unpleasantness
ratings at rest (F(3,74) � 2.26, p � 0.09). There was also a rest/
manipulation � group interaction (F(3,74) � 18.09, p � 0.001,
�p

2 � 0.42) (Fig. 2).
Follow-up independent-samples t tests comparing the percent-

age change in pain unpleasantness ratings between groups found
that meditation during saline administration significantly reduced
(p�0.001) pain unpleasantness ratings (	36%) compared with the
control group during saline administration (�18%). Similar to
the analysis on pain intensity ratings, naloxone did not reverse
meditation-induced reductions in pain unpleasantness ratings.
There were no significant differences between the meditation groups
in the presence of naloxone and saline (p�0.75). Meditation during
naloxone administration (	33%) also significantly reduced pain
unpleasantness compared with the control � saline (p � 0.001) and
control � naloxone (p � 0.001; �15%) groups.

Naloxone-related side effects
Four participants (data not included in the results) were with-
drawn from the study due to side effects associated with naloxone
infusion (Table 2). We discontinued infusion immediately after
subjects reported any discomfort and all four subjects were dis-
charged from the study after medical evaluation. Subject “A”
experienced syncope �8 min after initiation of the naloxone bo-
lus. The subject lost consciousness and was “unresponsive and
pale.” Upon regaining consciousness (after �3 min), the partic-
ipant had an episode of vomiting. After being taken to the emer-
gency department, the subject’s blood pressure and heart rate
elevated to normal levels and she was also no longer symptom-
atic. The subject later revealed that she had history of syncope.
Subject “B” reported feeling “hot with chest pressure” 7 minutes
after initiation of the naloxone bolus. Almost immediately after
the infusion was discontinued, the subject reported feeling “fine”
and her blood pressure and heart rate returned to baseline levels
(22 min after the infusion was halted). Subject “C” reported feel-

ing “lightheaded” nine minutes after naloxone bolus induction.
During this time, her blood pressure decreased and heart rate
increased (Table 2). However, her heart rate and blood pressure
returned to baseline levels �10 min after discontinuation of nal-
oxone infusion. The subject later revealed a history of “feeling
lightheaded when anxious.” Subject “D” reported feeling “light-
headed” �13 min after naloxone infusion began. At the onset of
this episode, the subject’s blood pressure and heart rate decreased
(Table 2). However, the subject reported “feeling better” and her
blood pressure and heart rate returned to baseline levels �10 min
after discontinuing naloxone.

After the completion of Session 6, subjects rated seven items
used in previous studies (Bentley et al., 2004; Petrovic et al., 2008;
Eippert et al., 2009) to assess potential adverse effects of nalox-
one. Each adverse effect was rated with a numerical rating scale
(0 – 6) as “inexistent” (0), “very weak” (1), “weak” (2), “moder-
ate” (3), “strong” (4), “very strong” (5), or “extremely strong”
(6). In the subjects with no overt adverse effects, naloxone did not
produce potentially unblinding subjective effects and there were
no significant differences between groups in self-reported ratings
of dry mouth, dry skin, blurred vision, sedation, nausea, dizzi-
ness, and headache (all p � 0.33; Table 1). To further confirm
this, all participants were asked whether they “were able to iden-
tify if they received naloxone or saline” after Experimental Ses-
sion 6 and 76. Seventy-six of the 78 participants answered “no.”
One subject correctly identified assignment to the naloxone con-
dition and the other participant incorrectly identified assignment
to the naloxone condition (i.e., subject received saline).

Discussion
In the present study, a high dose of the opioid antagonist nalox-
one failed to reverse mindfulness-meditation-induced analgesia.
Mindfulness meditation significantly reduced both pain intensity
and unpleasantness ratings during saline administration. During
naloxone administration, the pain intensity and unpleasantness
reductions associated with mindfulness meditation remained al-
most completely unaltered. This finding is particularly striking in
that the nonmeditation control groups exhibited a significant
increase in pain intensity and unpleasantness ratings during the
infusion period compared with rest (Figs. 1, 2).

In addition to opioidergic mechanisms, there is a myriad of
neurotransmitter systems that are associated with endogenous
analgesia (Millan, 2002). Therefore, the present findings cannot
address the involvement of any other single neurotransmitter
mechanism in mindfulness-meditation-related pain relief. In-
stead, in light of the present study’s findings and our previous
neuroimaging work, we propose that mindfulness meditation is a
complex, cognitive process that likely engages multiple brain net-
works and neurochemical mechanisms to attenuate pain.

Converging lines of evidence suggest that pain relief produced
by mindfulness meditation is mediated by multiple neural mech-
anisms (Zeidan et al., 2012; Grant, 2014). First, mindfulness-

Table 2. Characteristics associated with naloxone infusion-related side effects

Subject
ID Group Sex Weight Symptoms

BP during
baseline

BP during naloxone-
induced side effects

HR during
baseline

HR during naloxone-
induced side effects

A Meditation � naloxone Female 60.2 kg Syncope, vomiting 104/64 70/40 94 bpm 74 bpm
B Control � naloxone Female 57.4 kg Cloudy vision, excessive

perspiration, chest pressure
112/66 69/41 65 bpm 55 bpm

C Control � naloxone Female 69.5 kg Lightheadedness 111/68 96/55 55 bpm 85 bpm
D Control � naloxone Female 46.7 kg Lightheadedness 116/71 85/59 74 bpm 61 bpm

BP, Blood pressure; HR, heart rate; bpm, beats per minute.
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meditation-induced pain relief is associated with greater
activation in the lateral OFC/ventral-lateral PFC, and rostral
ACC, brain regions associated with altering the contextual
evaluation of pain (Zeidan et al., 2011; Zeidan et al., 2015). Im-
portantly, mindfulness-meditation-induced pain relief is also as-
sociated with reduced thalamic activity, which may be related to
significantly attenuated low-level sensory processing (Zeidan et
al., 2011).

We have repeatedly shown that greater mindfulness-medit-
ation-induced pain relief is associated with greater activation of
the OFC (Zeidan et al., 2011; Zeidan et al., 2015). Interestingly,
projections from the OFC synapse on the thalamic reticular nu-
clei (TRN), thin-layered structures that, in turn, inhibit sensory
processing in the thalamus (Jones, 1975; Crick, 1984; McAlonan
et al., 2000; Zikopoulos and Barbas, 2012). All feedback connec-
tions between the cortex and thalamus must pass through the
TRN in a topographically organized fashion (Pinault, 2004; Ziko-
poulos and Barbas, 2006, 2012). Therefore, the TRN may operate
as an attentional “gatekeeper” of sensory information (Crick,
1984) by suppressing ascending “irrelevant/distracting” sensory
events from reaching the level of conscious awareness (Guillery et
al., 1998; Weese et al., 1999; McAlonan et al., 2000; Sherman,
2001; McAlonan et al., 2006; Barbas and Zikopoulos, 2007; Raus-
checker et al., 2010; Zikopoulos and Barbas, 2012). We propose
that mindfulness-meditation-induced activation of the OFC ac-
tivates the TRN, which subsequently inhibits thalamic processing
to ultimately diminish the distribution of nociceptive informa-
tion throughout the cortex (Zeidan et al., 2011; Zeidan et al.,
2012; Rauschecker et al., 2015). That is, mindfulness meditation
may activate the proposed gating mechanism through executive
shifts in attention and nonjudgmental reappraisal of noxious
sensations.

The present study demonstrates that the meta-cognitive abil-
ity to acknowledge and let go of arising sensory events engages a
unique, self-facilitated pain modulatory system. Although we
have shown repeatedly that mindfulness meditation significantly
reduces pain after a brief mental training regimen (Zeidan et al.,
2010a; Zeidan et al., 2011; Zeidan et al., 2015), these findings
show that meditation reduces pain independently of opioidergic
neurotransmitter mechanisms. Because opioid and non-opioid
mechanisms of analgesia interact in a synergistic manner, the
present work suggest that the combination of mindfulness-based
and pharmacologic/nonpharmacologic analgesic strategies that
rely on opioid signaling may be particularly effective in the
treatment of pain.
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